
Bridging the Gap between Software Variability and
System Variant Management: Experiences from an

Industrial Machinery Product Line

Stefan Fischer∗, Lukas Linsbauer∗, Roberto E. Lopez-Herrejon∗, Alexander Egyed∗ and Rudolf Ramler†
∗ Johannes Kepler University Linz, Austria

{stefan.fischer, lukas.linsbauer, roberto.lopez, alexander.egyed}@jku.at
† Software Competence Center Hagenberg GmbH, Austria

rudolf.ramler@scch.at

Abstract—Companies that develop complex systems often do
so in the form of product lines, where each product variant can
be configured to a certain degree to fit a customer’s specific re-
quirements. Features cannot be combined arbitrarily in a product
line. The knowledge which features require or exclude each other
is represented in form of variability models. Unfortunately, in
practice, such variability models do not exist or they are oriented
towards the needs and viewpoints of specific organizational units,
e.g. sales, manufacturing, hardware engineering, or software
development. In this paper we present our experiences in building
a variability model for the highly configurable software part of a
complex mechatronic system produced by one of our industrial
partner companies. The company already had support and
processes for product variant management in place for sales and
hardware manufacturing. However, the corresponding variability
model was at the level of the overall system and excluded the
variability of the software part. The paper discusses the resulting
problems and challenges and describes the approach we selected
to bridge the gap that existed between product variants and
software configurations. The goal and driving motivation for
our work was the improvement of the software development
process and specifically the testing of software variants. The paper
also shows how software configuration and testing activities can
benefit from an appropriate variability model.

I. INTRODUCTION

The concept of product lines has been used in traditional
manufacturing industry for a long time. The same concept
is now also applied in software development in the form
of Software Product Lines (SPLs), which are a systematic
software reuse approach [1], [2]. SPLs have been shown to
provide benefits like reduced time-to-market, reduced costs or
increased quality [2]. A core concept of SPLs is the compo-
sition of product variants from a set of given features (i.e.
increments in functionality) in order to fit different customers’
requirements. This ability to adapt is called variability and is
represented in the form of variability models (most commonly
feature models) that express which features can be combined to
form a product variant and which ones cannot. Conceptually
a variability model is a set of constraints formulated on the
features of a product line that must hold for a valid product
variant.

Software is becoming more important now in every do-
main, also in the traditional manufacturing industry whose
focus used to be entirely on hardware not too long ago. We
observed that a significant portion of the know-how is now

in the software of the built machinery, and not just in the
mechanical and electrical components anymore, as can for
instance clearly be observed in the automotive domain. Due to
this fact, the product line concepts of traditional manufacturing
and software development in such companies fuse together
into an overall product line concept. A product variant of such
a product line has both, significant portions of hardware as
well as software that both need to be able to consistently
adapt and implement the desired variability of the product
line. Achieving this is far from trivial as it embodies several
challenges which we will discuss.

This paper summarizes our experiences in working with
an industrial partner, a internationally leading machine man-
ufacturing company with locations in different countries and
continents. While our initial perspective of this work centered
around the needs of the software development team (around
30 software engineers), we realized that no discussion on
a system’s variability could do without also understanding
the needs of the hardware development team working on
the mechanical and electrical parts (mechatronics engineers
in this case) and the members from the sales team (which
better than others understand the customers’ requirements). For
confidentiality issues, we cannot name our industrial partner or
any details about it. Therefore all examples used in this paper
are synthetic but have been chosen carefully to still reflect the
actual situation we experienced.

The motivation for our work was to support the company
in establishing a variability model for the software system and
to improve the testing process for software variants. There are
several SPL testing approaches out there that require variability
information to be available [3], [4]. Our goal therefore was
to gather (variability) information scattered across various
organizational units, relate and unify this information and make
it available and useful for the software development team and
- more specifically - for testing software variants. Ultimately a
consistent concept of a product line and its variability should
be established across the whole company.

The remainder of this paper is structured as follows:
Section II illustrates the initial situation that we found at
the company along with the problems that we identified.
Section III explains the approach that we took to tackle the
problems by integrating the existing models and concepts of
variability. Section IV shows the results we achieved, describes

2015 41st Euromicro Conference on Software Engineering and Advanced Applications

978-1-4673-7585-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SEAA.2015.57

402

applications based on tools we developed, and discusses some
lessons learned from the project. Section V provides an
overview of related work on testing SPLs in general and
in an industry context. Finally Section VI summarizes our
experiences, highlights our conclusions and gives an outlook
on our future work.

II. INDUSTRY CONTEXT & INITIAL SITUATION

The case company is an international machinery manufac-
turer building high-quality mechatronic systems. It is an in-
ternational company with several development and production
sites all over the globe, employing several thousand people.
The local site has specialized on engineering and manufac-
turing a range of heavy-duty industrial machineries organized
in terms of a product line. The company has a long and
outstanding history in mechanical and electrical engineering,
which has led to highly elaborated systems engineering and
manufacturing processes.

Although software plays an important role in mechatronic
systems such as industrial machinery, the whole domain is
still dominated by expertise and innovations in mechanical and
electrical engineering. The awareness for software engineering
is slowly but steadily increasing, mainly due to the constantly
increasing costs and effort involved in software development,
software maintenance and software defects. Over the last
decade the number of employees in departments concerned
with software development has grown substantially while the
size of other engineering teams remained more or less constant.
This development increases the need to improve the integration
of software engineering in the overall engineering and man-
ufacturing processes. However, this context also explains the
current situation of software engineering and, in particular, the
current approach for managing software variability.

When we started working with the company, we found that
the software development team had no documented variability
model. Knowledge about their products’ variability did exist
in the collective memory of the team. The first step was
to identify possible sources of information in the company.
It took some time and effort to find out where to gather
necessary information. Through discussions with the software
development team we identified the sales department as a
primary source of information, since that is where the lifetime
of any product variant begins.

A. Product Variant Management at System Level

The sales department maintains a model for managing
product variants, which we would call a variability model in
software engineering. This model is comprised of a hierarchi-
cally structured set of system properties, each with a set of
possible values and a related set of constraints defining the de-
pendencies between the properties. The model is implemented
in the company’s Enterprise Resource Planning (ERP) system
by SAP. The SAP business suite offers a dedicated module for
variant management [5] that integrates and exchanges infor-
mation with various ERP functions such as sales, production
planning, material management, costing, and procurement.

The model is also the basis for the product configurator
used by the sales personnel to negotiate and specify offers
for customers. The model including the constraints ensures

that only allowed combinations of features are selected and
that the machinery can be produced from these specifications.
Furthermore it maps high-level sales options to specific system
parts and materials. For example, the sales option ”destination
country” triggers the selection of suitable voltage converters
and power connectors. In the end, whenever a new product is
sold, the ERP system automatically outputs the bill of materials
and task lists for production planning and control.

Figure 1 illustrates the properties and the possible values of
the configuration options in the ERP system, and it also depicts
the constraints that exists for selecting different property val-
ues. The model contains 71 properties and 589 corresponding
values. In the center the figure depicts a root node of the model,
which combines all possible configurations and represents the
starting point for configuring a system. From the center there
are connections to the properties (shown as first, inner circle
of nodes), and from these properties there are connections to
their possible values (outer circle of nodes). We can observe
that for most properties there exists a great number of possible
values, which means that there are many configuration options
one can select for these properties. Furthermore, the constraints
are depicted in Figure 1 as the connections between the nodes
representing the property values on the outer layer. Overall this
figure should give a good understanding of the complexity of
the system and the large number of configurations that are
possible.

Fig. 1. Sales properties and property values with constraints.

At that point in the product line the software system is
only considered as ”yet another” system part that has to be
integrated. The variant management considers the software
system as a single, self-contained entity and does not distin-
guish between different software components or configuration
settings.

B. Software Architecture and Variability

Of course, the software has to be configured according
to the integrated hardware features and properties of the

403

overall system. However, there existed no automatic support
that translates the selected configuration based on the sales
model into a configuration of the software system. In fact, the
knowledge of how to configure the software to match the con-
figuration of the machinery is part of the expert know-how of
the responsible employees. The interaction between hardware
and software can be highly complex, in particular since ma-
chines have to be calibrated and adjusted for specific produc-
tion processes. Thus, software configuration tasks range from
setting flags in configuration files to the optimization of pro-
cess parameters stored in the software system.

The overall software system has two main sub-systems,
the human machine interface (HMI) and the control software.
The HMI provides a graphical representation of all parts and
internal states of the system for machine operators and service
engineers as well as an interface for programming the machine
for the production process. The control software is a real-time
software system for actually controlling the hardware of the
machinery including custom hardware features and optional
equipment ranging from laser sensors to loading robots.

The software system includes a central database for stor-
ing configuration parameters and user specific settings. This
database contains several hundred parameters related to the
configuration of various different software modules. A graph-
ical configuration interface is provided for setting frequently
used configuration options. However, since the configuration of
the machinery usually goes beyond these options, the experts
do not rely on the configuration interface but directly set the
values in the database. Furthermore, although the database is
the central point for storing configuration data, the various
software modules may also maintain individual settings and
configuration files. For example, software modules usually
provide default values for configuration parameters in case
these parameters are not present in the central database. The
constant evolution of the system, i.e., the software system as
well as the mechanical and electrical system, increases the
complexity as new configuration options have to be added
and others become obsolete but need to be maintained for
reasons of backward compatibility. Finally, there are several
more configuration files and settings from the underlying
run-time system, the system libraries, hardware drivers and
the operating system itself (e.g., installed service packs and
supported languages) that affect the software configuration.

Currently the approach for persisting software configura-
tion data is redesigned with the goal to replace the central
database. Several members of the software development team
(e.g., software architect, product manager, and developers of
various software modules) are involved in specifying and
implementing the new configuration mechanism.

C. Problems and Challanges

Currently the size and complexity of the software system
is constantly increasing but software variability is still discon-
nected from the variant management of the overall mechatronic
system. In consequence, software development faces several
problems and challenges.

• Department specific understanding of variability: The
model capturing the variability of the overall system
is mainly used by the sales department and not made

available for the members of the software development
teams. Thus, the understanding of what is meant
by variability is different in the sales process, in
mechanical and electrical engineering, and in software
development. This goes to the point where the soft-
ware team still develops and maintains features that
are not part of a valid, sellable product configuration
anymore.

• No automatic software configuration: The bill of mate-
rials used in manufacturing is generated as part of the
product configuration process. However, there is no
equivalent for configuring the software system. The
configuration of the software system is completely
informal. The knowledge of how to configure the
software to correctly interact with a certain hardware
configuration is tacit knowledge possessed by a small
group of employees.

• Lack of communication over organizational bound-
aries: Exchanging information across the boundaries
of the different organizational units (i.e., sales, me-
chanical engineering, electrical engineering, software
engineering) is far from trivial due to unrelated per-
spectives, tasks and responsibilities. Not even the
terminology used in the model of the sales team is
consistent with terminology used during the configu-
ration of the software system.

• Models from different domain perspectives: The map-
ping between the different models used in sales,
mechatronics and software is not trivial. For example,
not every property in the sales model has an impact
on the hardware or the software, e.g., the packaging
requirements to protect the machine when it is shipped
to the customer site. Similarly, not every property
that affects the hardware necessarily has an impact
on the software, e.g., the color selected for painting
the machine. And we also found that there are sales
properties that affect the software only but not the
hardware, e.g., interfaces to production planning and
control systems. The problem is further intensified by
the many different settings and configuration methods
spread out across the software system. In some cases
the same configuration can be achieved by setting
different parameters or making changes to different
property files.

• Extremely large number of configurations: The impact
the configuration problem has on software testing and
debugging is enormous [6]. Considering only the main
options listed in the configuration interface for the
central database, we calculated that there are more
than 110 million possible configurations. In any case
it is estimated that there are several hundred different
configurations of the software product in the field.
There is no distinct general or standard configuration.
More than hundred of these configurations have been
frequently applied to numerous shipped machines,
thus, each can therefore be considered as a ”standard”
configuration. Without taking the configuration con-
straints from the sales model into account, a regression
test would take several weeks, even if it is fully
automated [7].

404

Naturally, all these issues are a problem because of the
important (and still rising) role of the software. A significant
portion of the product’s functionality is already implemented in
software. However, traditional manufacturing companies often
underestimate the consequences and risk that software devel-
opment as well as software variability is getting out of sync
with the variant management used in sales and manufacturing.

III. VARIABILITY MODEL INTEGRATION

This section describes our approach for bridging the gap
between the product variant management used by the sales de-
partment and the software configuration options implemented
in the software system.

A. Overview of the Approach

Figure 2 illustrates the integration approach. It is based
on a distinct model layer introduced between the high-level
model maintained in the ERP system and the low-level model
represented by the software configuration options. Since there
is no leading system that can be appointed as ”reference”, the
layer helps to synchronize the different abstraction levels of
the models (i.e., top-down view of variability in product man-
agement and configurations emerging bottom-up in software
development) as well as their evolution (i.e., product version
versus software releases). The mapping itself is maintained in
a separate model that can also be evolved individually. The
integration is supported by a set of tools that facilitate and
implement the illustrated approach.

SAP Variant Configuration

Software System
Configuration Files

software
properties

sales properties
& constraints

mapping

Fig. 2. Mapping of sales properties and software configuration options.

B. Data Extraction and Mapping

In a first step we analyzed the model maintained in the ERP
system. The SAP variant configuration [5] provides a com-
prehensive modeling and configuration environment including

programming with logical expressions for specifying precondi-
tions, selection criteria, etc. By parsing the results from SAP’s
export mechanisms we were able to extract following data:

• The set of properties (i.e. features) and the values each
property can take, e.g., property Country can take the
values France, Spain etc.

• The set of constraints on these properties, e.g.,
(Country = UK ∨ Country = US ∨ ...) =>
Language = English.

• A set of default values for the properties, e.g., the
default value for property Language is English if no
value is selected during product configuration.

We received data on software configuration options from
the software development team. Furthermore we extracted con-
figuration options from the user interface of the configuration
database. This also resulted in a set of properties with possible
values but without any constraints. In fact the software system
currently allows any combination of configuration values to
be set without checking for validity. In case of a serious
misconfiguration the system would not be able to recover
without manual intervention.

In total, the number of identified software properties used
in software configurations was significantly smaller than the
sales features extracted from the ERP system (71 properties
with in sum 589 possible property values in the ERP system
versus 16 properties and 60 values for software configurations).
Nevertheless, the software is highly configurable. But it is not
obvious and also not documented what machine configura-
tion requires what software configuration. Some configuration
terms in the software match sales and machine feature names,
others do not match by name but might still have an equivalent
sales or machine feature, and some are connected through
more complex constraints. We related the sales and software
properties by a set of manually created constraints. These
constraints were derived from similarities in the names of
certain properties or their values or via discussions with
employees from the sales and software departments.

C. Implementation

As mentioned before, the software configuration options
are expressed differently than the sales properties. Therefore
the mapping was not a simple 1:1 mapping, but some sales
properties were expressed as multiple properties in the soft-
ware and vice versa. We implemented this mapping through a
set of constraints linking the properties to one another, inspired
by a syntax introduced by Microsoft in their PICT tool for
pairwise testing [8]. The syntax allows expressing the model in
a human readable textual format. Constraints can be specified
using a simple yet flexible constraint language. The extracted
sales properties and software configuration options were also
both modeled in this syntax.

We ended up with three models (represented by the circles
in Figure 2): one model with the sales properties and con-
straints, one for the mapping constraints, and one model con-
taining the software properties. The three models were stored
in separate files. This separation supports modularization as
well as an independent evolution path and version control for

405

Sales Properties:

1 MachineNumber: "M1", "M2"
2 Size: "M", "X"
3 Protection: "YES", "NO"
4 Simulate: "Y", "N"
5
6 IF [Size] = "X" THEN [Protection] = "YES";
7 IF [Protection] = "YES" THEN [Simulate] = "Y";

Software Properties:

8 MachineType: "M1", "M1X", "M2", "M2X"
9 Simulation: "YES", "NO"

Mapping:

10 [MachineType]."M1" = [MachineNumber]."M1" AND
[Size]."M";

11 [MachineType]."M1X" = [MachineNumber]."M1" AND
[Size]."X";

12 [MachineType]."M2" = [MachineNumber]."M2" AND
[Size]."M";

13 [MachineType]."M2X" = [MachineNumber]."M2" AND
[Size]."X";

14 [Simulation]."YES" = [Simulate]."Y";
15 [Simulation]."NO" = [Simulate]."N";

Fig. 3. Example Properties

each individual model. For example, once additional informa-
tion is provided by the development team, the next version
of the model representing the software properties will also
contain constraints for further restricting the selection of these
properties.

Figure 3 shows a small example with a few selected
properties, in the used syntax. The lines from line 1 to line 4
represent the sales properties. Lines 6 and 7 are the constraints
for the sales properties. They are formulated in an if-then-
else manner, for instance, if Size is X then Protection has
to be YES as can be seen in line 7. Next, line 8 and line 9
represent the properties as used in the software configuration.
Finally line 10 to line 15 are the mapping between the software
properties and the sales properties.

Line 10 to line 13 in Figure 3 represent the mapping
between MachineType in the software properties and prop-
erties MachineNumber and Size in the sales properties. For
example line 11 means, if MachineType is M1X then the sales
properties MachineNumber and Size must be set to M1 and
X respectively. These constraints go both ways, so also if
MachineNumber is M1 and Size is X, then MachineType has
to be M1X for the constraint to be satisfied.

The implementation resulted in a suite of small tools
and utilities that provide support for following tasks. The
application of these tools is described in more detail in the
next section.

• Parsing and analyzing the model files containing prop-
erties, possible values and constraints formulated on
these properties.

• Checking the validity of a specified configuration (i.e.,
a product variant within the product line) and showing
violated constraints in case of a misconfiguration.

• Generating a (partial) software configuration from

a given sales configuration (similar to the bill of
materials in manufacturing).

• Computing of a minimal set of combinations of soft-
ware configuration properties for software testing that
satisfy t-wise coverage criteria.

IV. RESULTS AND APPLICATIONS

This section discusses the results of our work in terms of
the effect for the case company and it provides further details
about the application of the tools we developed and the lessons
we learned.

A. Awareness for Software Variability Issues

A very important result of our work for our industrial
partner was that it did raise awareness about internal problems
in the overall engineering process. The problems were mainly
caused by a lack of information exchange between the different
organizational units within the company. For instance software
and hardware development had a very different understanding
of the product features that resulted in a mismatch of what
has to be maintained. In the collaboration with representatives
from the sales department and from software engineering we
found out that the software development team still maintained
features that had been removed from the sales configuration
and no machines were produced that would require these
features.

The software department had a notion of features, which
however were mainly a subset of the sales features. Further-
more the software features had some different characteristics
than the sales features, which makes a mapping and informa-
tion exchange difficult and prone to inconsistencies.

In general we observed that the hardware side, i.e., the
mechanical and electrical engineering products, received more
attention and had a higher priority than the software side. Sadly
this is often the case in industry, partly due to historical reasons
and partly due to the ability to change the software more
easily in late stages of the engineering process. Even if this
additional flexibility is considered an advantage of software,
late changes in the software development also cause additional
costs, increase the risk of introducing critical defects, and
require additional communication and synchronization effort
in the concurrent engineering of hardware and software.

B. t-Wise Covering Arrays

An important goal was to provide support for software
configuration testing. Testing all possible configurations is
usually impossible; in our case this would mean testing more
than 110 million configurations. To reduce the number of
combinations we developed tool support for combinatorial
interaction testing that generates a t-wise covering array on
the software features. The tool has to take the constraints into
account in order to make sure that only valid combinations are
generated for testing.

With the support of the tool we generated 1.232 valid
software configurations satisfying 3-way interactions (t=3)
between the configuration parameters. The initial exorbitant
amount of possible combinations was reduced to a small
(0.001%) but significant number of configurations relevant for

406

testing. By including additional constraints as suggested by the
development team, this number can be reduced even further.

Definition 1: A t-set ts is a 2-tuple [sel,sel] representing
a partially configured product, defining the selection of t
properties, i.e. ts.sel ∩ ts.sel = ∅ ∧ |ts.sel ∪ ts.sel| = t.

For generating the t-wise covering arrays our tool first
selects t-wise combinations (i.e. t-sets see Definition 1) based
on the software properties. Definition 1 is usually used for t-
sets for the selection of binary features (i.e. features that are
either selected, in sel or not selected, in sel). To use t-sets for
our purpose we use sets of properties instead. Meaning the set
sel represents properties that have to be assigned with one of
its predefined values and set sel represents properties that do
not get a value assigned to them (i.e., are not selected in the
current configuration). Therefore our t-sets cover all possible
t-wise combinations.

For each of the properties in our t-sets that get a value
assign (i.e. properties in sel), the algorithm checks all pos-
sible predefined values for them and subsequently tries to
satisfy the constraints in the mapping file, by selecting the
sales property-values that are mapped the selected software
property-values. This allows us to make use of the constraints
in the sales model. Subsequently the tool tries to satisfy
all these constraints in the sales model, by selecting the
appropriate property-values. If there are constraints left that
cannot be satisfied, because of another software property that
was already set to a value, the configuration is invalid and
will not be considered in the covering array. Otherwise, if the
selection is valid, i.e. no constraints are violated, the mapping
is utilized once more to check if there are software property-
values that have to be selected now, due to the selection of
sales property-values while satisfying constraints. If this was
successful, and there are no constraints violated in the software
properties, the configuration will be considered in generating
the covering array.

To calculate the covering array we used an algorithm
similar to the one used by Johansen et al. in [9]. The first
step is to exclude all the t-sets that are not satisfiable, i.e.,
combinations of property-values that already violate at least
one constraint and can not be made valid by selecting any
other properties that do not have a value yet, as described
above. This leaves us with a list of t-sets that have to be
covered by the resulting covering array. Next the algorithm
merges these t-sets into valid configurations. By this merging
we get products that cover more, best case as many as possible,
t-wise combinations. The algorithm iterates over the t-sets
and adds them to a current configuration. For each t-set it
checks if the configuration is still satisfiable with the t-set
added. If so the t-set is added to the configuration, otherwise
it is skipped for the current configuration. After all the t-sets
have been checked, for the current configuration, the already
added t-sets are removed from the list and the configuration is
made valid by selecting property-values that still may violate
satisfiable constraints. The algorithm repeats this process, with
new current configurations and the remaining t-sets, until the
list of t-sets is empty. The configurations that have been
merged in this way represent the resulting covering array.

The advantage of this approach is that it can consider

transitive dependencies. For instance property MachineType
is set to M1X in the software properties in Figure 3. Because of
the mapping in line 11, this means property Size in the sales
properties is set to X then property Protection has to be YES,
due to the constraint in line 6. From this and the constraint
in line 7 property Simulate has to be set to Y. For the
software properties this then means property Simulation has
to be YES, due to the mapping constrain in line 14. By using
all the sales properties we can use these constraints directly
and therefore get the behavior as if we had the constraint if
MachineType is M1X then Simulation has to be YES directly
in the software properties.

Table I shows the combinations generated by the tool for
the example software properties and the mapped constraints in
Figure 3.

MachineType = M1, Simulation = YES
MachineType = M1, Simulation = NO
MachineType = M1X, Simulation = YES
MachineType = M2, Simulation = YES
MachineType = M2, Simulation = NO
MachineType = M2X, Simulation = YES

TABLE I. GENERATED COMBINATIONS

C. Adding Constraints to the Configuration Interface

Another application leveraged the ability of the tool support
to check if a given software configuration satisfies basic
constraints such as those from the sales model. The company
showed interest in integrating our tool as an add-on for the
configuration interface of the central configuration database.
The interface allowed selecting values for a set of frequently
used configuration properties. Yet the interface did not provide
any means for checking configuration constraints so far.

To add constraint checking to the interface they decided
to utilize the implementation provided by our tool. The idea
was not to restrict the user in making specific selections of
property values but to issue a warning in case of a potential
misconfiguration. Potential misconfigurations are detected by
checking if a configuration is valid, which works exactly as
described above, based on the constraints specified in the
sales model. If a configuration is invalid, i.e., at least one
constraint is violated, the tool will report an error. However,
the user is still able to proceed even though the last selection
resulted in an invalid configuration, which of course can also
be understood as a partially valid configuration [10]. Thus
the tool points the user to the constraints that have been
violated, so that the user can change the selection and repair the
configuration. Suggestions for repairing are important since the
constraint model is highly-complex and different repairs may
be possible to get back into a valid state.

D. Lessons Learned

One of the most important observations we made in our
work was that software variability can be influenced by very
different organizational units. In the case of our industrial
partner, the sales and the software departments as well as the
mechanical and electrical engineering departments influence
what configurations of the software system are possible and

407

valid. All these departments can introduce constraints which
make existing configurations in the software pointless, because
their exists no machinery that can be built in that way. Ex-
cluding invalid configurations from testing is important since
they would lead to numerous hours of wasted testing time (per
configuration) and a possibly large amount of false positive
test results requiring further manual analysis. Therefore all the
constraints that can influence the software in any way should
be considered in an attempt to reduce the test effort.

We observed that the mapping between the models is
critical for reducing the test effort. Therefore we performed an
experiment where we used only mappings from one software
property at a time, to see how the constraints for these prop-
erties affect the resulting number of configurations that would
have to be tested. For the experiment we use 3-way interactions
as the criteria for configuration coverage in testing. When
including all our manually defined mapping constraints, our
algorithm computes 1.232 configurations that would have to be
tested for 3-way coverage. Without these mapping constraints
(i.e., only unconstrained software properties) our tool computes
1.579 configurations, which includes 347 configurations that
are invalid according to the sales model.

Group of Constraints Reduction 3-way
A 2

B 2

C 162

D 214

E 2

F 0

G 2

H 0

I 0

TABLE II. EFFECT OF DIFFERENT CONSTRAINT GROUPS ON THE

NUMBER OF CONFIGURATIONS TO TEST.

Table II shows how groups of mapping constraints for
different software properties affect the resulting number of
configurations. In particular the table illustrates the reduction
of configurations calculated with 3-way covering arrays that
we achieve when using only a specific group of mapping
constraints and excluding all other mapping constraints. We
can observe that the groups C and D have the biggest impact
for reducing the number of configurations. All other constraints
have very little or no impact, because these properties are not
much or not at all constrained in the ERP system either. Our
observations leads us to believe that we can improve the results
further if we refine the data in our future work.

As a final lesson learned we recognized that it is extremely
important for different organizational units to work together by
following a defined process that supports information exchange
and communication between each other. Otherwise it can
happen that in developing and evolving a complex system,
new features are developed incorrectly or maintained unneces-
sarily. The exchange of information regarding variability and
configurations can be implemented for example in form of a
company wide understood model that integrates the different
views and needs of all involved organizational units.

V. RELATED WORK

Johansen et al. [3] developed an optimized approach for
generating covering arrays. As basis for their optimizations

they used an algorithm similar to the one used in this paper
for generating the covering array. It would be interesting if
their optimization could also be used in our scenario. However
the difference to our work is, that in our scenario we did not
have a feature model but rather properties that can take on
predefined values. Furthermore Haslinger et al. [4] use feature
model knowledge to reduce the number of t-wise combinations
in the calculation of covering arrays. In our work we used
the knowledge that a property can only take on one value
at a time as the base of generating the covering array. The
difference is that we do not have binary features, which are
either selected or not selected, but predefined values for each
property. Moreover, the main contribution of our work was
preparation of data from different models to be able to apply
a combinatorial interaction approach on the company specific
variability models.

A comprehensive overview of combinatorial interaction
testing for software product lines can be found in [11].
Examples for applying combinatorial interaction testing to
software product lines from industry are the works of Marijan
et al. [12] and Steffens et al. [13] who evaluate their approaches
on industrial case studies. The difference to our work is that
they rely on feature models with binary features, and they also
focus less on the challenges involved in industry applications.
However the evaluations in these publications could be useful
for our future work and might give us results to compare
against when moving forward in the collaboration with our
industry partner.

Wang et al. [14] describe their research on applying
combinatorial interaction testing to an industrial SPL and
also illustrate the companies initial problems and how they
improved their testing. However, their work is concerned with
prioritization of test cases and, again, based on a feature model
with binary features. Nonetheless they also observed similar
problems in the processes and workflows of their industry
partners. For instance they found many tasks that had to
be performed manually and for which there was no model
or documentation available. The knowledge about performing
these tasks existed solely in the heads of some employees.
The work of Wang et al. confirms that the situation we
experienced at our industry partner is not an isolated case and
that the proposed integration approach may be useful to a wider
audience.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the experiences we gained
from building a variability model for the highly configurable
software part of a complex mechatronic system produced by
one of our industry partners. The goal of the collaboration has
been to support the company in establishing a variability model
for the software system and to optimize testing of the software
configurations. In the process of getting there, we discovered
some shortcomings in overall engineering process and a loss
of information across the boundaries of organizational units.
We were able to highlight these problems and to raise the
awareness for software variability issues.

During our work together with company representatives
we found out that there is already a model that expresses
the product variability at system level in form of properties

408

and constraints. This model is used by the sales department
to configure products and by manufacturing for production
planning and control.

From this model we extracted the information about prod-
uct variants and constraints. We mapped this information to the
software variability model derived form software configuration
options. The combined model was finally used as basis for
computing test configurations with t-wise interaction coverage.
Throughout our work we provided the company with a set
of tools that can be used to i) compute t-wise coverage, ii)
verify the validity of a given software configuration, and if it
is found to be invalid, iii) show which constraints are violated
and suggest appropriate repairs.

With our work we bridged the gap between product variant
management and software configurations. We were able to
make information from the high-level variant management
available to the software development team. The provided
information is used to apply advanced testing techniques like,
e.g., combinatorial interaction testing. Furthermore, the tool
support for checking the validity of a software configuration
is considered for integration in the configuration interface of
the software system.

This paper describes the first results we were able to
achieve in our collaboration with the industry partner. The
success and the positive feedback encourage us to continue
our work. Our plans for future work are manifold.

First of all we plan to continue in the direction of inte-
grating the different variability models by further refining the
mapping between product variants and software configurations.
Currently the mapping uses only properties and values that are
directly associated. By digging deeper into the knowledge of
the experts, we want to extract and implement the rules that
are used to resolve complex, multi-level dependencies in the
software configuration process. In the end we want to provide
the ability to automatically generate a full software configura-
tion from the high-level product configuration, similar to the
automated generation of the bill of materials from the sales
configuration in the ERP system. By automating the process
the software configuration of new machinery could be speed
up significantly.

The effort required for configuration testing is still a major
issue for the company. Thus, we plan to use the default
values of the properties stored in the sales model to determine
which product variants are more likely and to prioritize the
configurations for testing according to this likelihood. Another
possibility would be to include the sales data about which
configurations were sold in the past in order to determine the
most used property values for deriving a prioritization schema.

In the long term it will be necessary to establish a company-
wide, integrated variability model and configuration process
that is used and understood across all departments. To achieve
this we plan to start with the development of a company-wide
knowledge base that can be viewed and maintained by all de-
partments. It should integrate the heterogeneous models from
sales, hardware, software etc., map the commonly used feature
terms, and contain a database for recording all configurations
in the field.

ACKNOWLEDGMENT

The work described in this paper was supported by the
COMET program of the Austrian Research Promotion Agency
(FFG). Furthermore we want to thank our industry partner for
the cooperation and support, and we gratefully acknowledge
the permission to report our experience.

REFERENCES

[1] F. van der Linden, K. Schmid, and E. Rommes, Software product lines
in action - the best industrial practice in product line engineering.
Springer, 2007.

[2] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer, 2005.

[3] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in 16th Interna-
tional Software Product Line Conference, SPLC ’12, Salvador, Brazil
- September 2-7, 2012, Volume 1, E. S. de Almeida, C. Schwanninger,
and D. Benavides, Eds. ACM, 2012, pp. 46–55.

[4] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Using feature
model knowledge to speed up the generation of covering arrays,” in The
Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, Pisa , Italy, January 23 - 25, 2013, 2013,
p. 16.

[5] U. Blumohr, M. Munch, and M. Ukalovic, Variant Configuration with
SAP, 2nd ed. SAP PRESS, 2011.

[6] D. Jin, X. Qu, M. B. Cohen, and B. Robinson, “Configurations
everywhere: Implications for testing and debugging in practice,” in
Companion Proceedings of the 36th International Conference on Soft-
ware Engineering, ser. ICSE Companion 2014. New York, NY, USA:
ACM, 2014, pp. 215–224.

[7] R. Ramler and W. Putschogl, “Reusing automated regression tests for
multiple variants of a software product line,” in Proceedings of the 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops, ser. ICSTW ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 122–123.

[8] J. Czerwonka, “Pairwise testing in the real world: Practical
extensions to test-case scenarios,” 2008. [Online]. Available:
https://msdn.microsoft.com/en-us/library/cc150619.aspx

[9] M. F. Johansen, Ø. Haugen, and F. Fleurey, “Properties of realistic
feature models make combinatorial testing of product lines feasible,” in
Model Driven Engineering Languages and Systems, 14th International
Conference, MODELS 2011, Wellington, New Zealand, October 16-21,
2011. Proceedings, 2011, pp. 638–652.

[10] A. Nöhrer, A. Biere, and A. Egyed, “A comparison of strategies for
tolerating inconsistencies during decision-making,” in 16th Interna-
tional Software Product Line Conference, SPLC ’12, Salvador, Brazil -
September 2-7, 2012, Volume 1, 2012, pp. 11–20.

[11] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A
first systematic mapping study on combinatorial interaction testing
for software product lines,” in 8th IEEE International Conference on
Software Testing, Verification and Validation, ICST 2015 Workshops
Proceedings, April 13-17, 2015, Graz, Austria, 2015, pp. 1–10.

[12] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise
testing for software product lines,” in 17th International Software
Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 - 30,
2013, 2013, pp. 227–235.

[13] M. Steffens, S. Oster, M. Lochau, and T. Fogdal, “Industrial evaluation
of pairwise SPL testing with moso-polite,” in Sixth International Work-
shop on Variability Modelling of Software-Intensive Systems, Leipzig,
Germany, January 25-27, 2012. Proceedings, 2012, pp. 55–62.

[14] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen,
“Multi-objective test prioritization in software product line testing: an
industrial case study,” in 18th International Software Product Line
Conference, SPLC ’14, Florence, Italy, September 15-19, 2014, 2014,
pp. 32–41.

409

